Скорость движения. Равноускоренное движение, вектор ускорения, направление, перемещение

Траектория движения материальной точки через радиус-вектор

Подзабыв этот раздел математики, в моей памяти уравнения движения материальной точки всегда представлялись при помощи знакомой всем нам зависимости y(x) , и взглянув на текст задачи, я немного опешил когда увидел векторы. Оказалось, что существует представление траектории материальной точки при помощи радиус-вектора — вектора, задающего положение точки в пространстве относительно некоторой заранее фиксированной точки, называемой началом координат.

Формула траектория движения материальной точки помимо радиус-вектора описывается так же ортами — единичными векторами i, j , k в нашем случае совпадающими с осями системы координат. И, наконец, рассмотрим пример уравнения траектории материальной точки (в двумерном пространстве):

Что интересного в данном примере? Траектория движения точки задается синусами и косинусами, как вы думаете, как будет выглядеть график в всем нам знакомом представлении y(x) ? «Наверное какой-то жуткий», подумали вы, но все не так сложно как кажется! Попробуем построить траекторию движения материальной точки y(x), если она движется по представленному выше закону:

Здесь я заметил квадрат косинуса, если вы в каком-нибудь примере видите квадрат синуса или косинуса, это значит что нужно применять основное тригонометрическое тождество, что я и сделал (вторая формула) и преобразовал формулу координаты y , чтобы вместо синуса подставить в нее формулу изменения x :

В итоге жуткий закон движения точки оказался обычной параболой , ветви которой направлены вниз. Надеюсь, вы поняли примерный алгоритм построения зависимости y(x) из представления движения через радиус-вектор. Теперь перейдем к нашему главному вопросу: как же найти вектор скорости и ускорения материальной точки, а так же их модули.

Вектор скорости материальной точки

Всем известно, что скорость материальной точки — это величина пройденного пути точкой за единицу времени, то есть производная от формулы закона движения. Чтобы найти вектор скорости нужно взять производную по времени. Давайте рассмотрим конкретный пример нахождения вектора скорости.

Пример нахождения вектора скорости

Имеем закон перемещения материальной точки:

Теперь нужно взять производную от этого многочлена, если вы забыли как это делается, то вот вам . В итоге вектор скорости будет иметь следующий вид:

Все оказалось проще, чем вы думали, теперь найдем вектор ускорения материальной точки по тому же самому закону, представленному выше.

Как найти вектор ускорения материальной точки

Вектор ускорения точки это векторная величина, характеризующая изменение с течением времени модуля и направления скорости точки. Чтобы найти вектор ускорения материальной точки в нашем примере, нужно взять производную, но уже от формулы вектора скорости, представленной чуть выше:

Модуль вектора скорости точки

Теперь найдем модуль вектора скорости материальной точки. Как вы знаете из 9-го класса, модуль вектора — это его длина, в прямоугольных декартовых координатах равна квадратному корню из суммы квадратов его координат. И откуда же из полученного нами выше вектора скорости взять его координаты спросите вы? Все очень просто:

Теперь достаточно только подставить время, указанное в задаче и получить конкретное числовое значение.

Модуль вектора ускорения

Как вы поняли из написанного выше (и из 9-го класса), нахождение модуля вектора ускорения происходит тем же образом, что и модуля вектора скорости: извлекаем корень квадратный из суммы квадратов координат вектора, все просто! Ну и вот вам, конечно же, пример:

Как вы видите, ускорение материальной точки по заданному выше закону не зависит от времени и имеет постоянную величину и направление.

Еще примеры решений задачи нахождения вектора скорости и ускорения

А вот тут вы можете найти примеры решения и других задач по физике . А для тех, кто не совсем понял как найти вектор скорости и ускорения, вот вам еще парочка примеров из сети без всяких лишних объяснений, надеюсь, они вам помогут.

Если у вас возникли какие-нибудь вопросы, вы можете задать их в комментариях.

Кинематика точки, кинематика твердого тела, поступательное движение, вращательное движение, плоскопараллельное движение, теорема о проекциях скоростей, мгновенный центр скоростей, определение скорости и ускорений точек плоского тела, сложное движение точки

Содержание

Кинематика твердого тела

Чтобы однозначно определить положение твердого тела, нужно указать три координаты (x A , y A , z A ) одной из точек A тела и три угла поворота. Таким образом, положение твердого тела определяется шестью координатами. То есть твердое тело имеет шесть степеней свободы.

В общем случае, зависимость координат точек твердого тела относительно неподвижной системы координат определяется довольно громоздкими формулами. Однако скорости и ускорения точек определяются довольно просто. Для этого нужно знать зависимость координат от времени одной, произвольным образом выбранной, точки A и вектора угловой скорости . Дифференцируя по времени, находим скорость и ускорение точки A и угловое ускорение тела :
; ; .
Тогда скорость и ускорение точки тела с радиус вектором определяется по формулам:
(1) ;
(2) .
Здесь и далее, произведения векторов в квадратных скобках означают векторные произведения.

Отметим, что вектор угловой скорости одинаков для всех точек тела . Он не зависит от координат точек тела. Также вектор углового ускорения одинаков для всех точек тела .

См. вывод формул (1) и (2) на странице: Скорость и ускорение точек твердого тела > > >

Поступательное движение твердого тела

При поступательном движении, угловая скорость равна нулю. Скорости всех точек тела равны. Любая прямая, проведенная в теле, перемещается, оставаясь параллельной своему начальному направлению. Таким образом, для изучения движения твердого тела при поступательном движении, достаточно изучить движение одной любой точки этого тела. См. раздел .

Равноускоренное движение

Рассмотрим случай равноускоренного движения. Пусть проекция ускорения точки тела на ось x постоянна и равна a x . Тогда проекция скорости v x и x - координата этой точки зависят от времени t по закону:
v x = v x0 + a x t ;
,
где v x0 и x 0 - скорость и координата точки в начальный момент времени t = 0 .

Вращательное движение твердого тела

Рассмотрим тело, которое вращается вокруг неподвижной оси. Выберем неподвижную систему координат Oxyz с центром в точке O . Направим ось z вдоль оси вращения. Считаем, что z - координаты всех точек тела остаются постоянными. Тогда движение происходит в плоскости xy . Угловая скорость ω и угловое ускорение ε направлены вдоль оси z :
; .
Пусть φ - угол поворота тела, который зависит от времени t . Дифференцируя по времени, находим проекции угловой скорости и углового ускорения на ось z :
;
.

Рассмотрим движение точки M , которая находится на расстоянии r от оси вращения. Траекторией движения является окружность (или дуга окружности) радиуса r .
Скорость точки :
v = ω r .
Вектор скорости направлен по касательной к траектории.
Касательное ускорение :
a τ = ε r .
Касательное ускорение также направлено по касательной к траектории.
Нормальное ускорение :
.
Оно направлено к оси вращения O .
Полное ускорение :
.
Поскольку векторы и перпендикулярны друг другу, то модуль ускорения :
.

Равноускоренное движение

В случае равноускоренного движения, при котором угловое ускорение постоянно и равно ε , угловая скорость ω и угол поворота φ изменяются со временем t по закону:
ω = ω 0 + ε t ;
,
где ω 0 и φ 0 - угловая скорость и угол поворота в начальный момент времени t = 0 .

Плоскопараллельное движение твердого тела

Плоскопараллельным или плоским называется такое движение твердого тела, при котором все его точки перемещаются параллельно некоторой фиксированной плоскости. Выберем прямоугольную систему координат Oxyz . Оси x и y расположим в плоскости, в которой происходит перемещение точек тела. Тогда все z - координаты точек тела остаются постоянными, z - компоненты скоростей и ускорений равны нулю. Векторы угловой скорости и углового ускорения наоборот, направлены вдоль оси z . Их x и y компоненты равны нулю.

Проекции скоростей двух точек твердого тела на ось, проходящую через эти точки, равны друг другу.
v A cos α = v B cos β .

Мгновенный центр скоростей

Мгновенным центром скоростей называется точка плоской фигуры, скорость которой в данный момент равна нулю.

Чтобы определить положение мгновенного центра скоростей P плоской фигуры, нужно знать только направления скоростей и двух его точек A и B . Для этого через точку A проводим прямую, перпендикулярную направлению скорости . Через точку B проводим прямую, перпендикулярную направлению скорости . Точка пересечения этих прямых есть мгновенный центр скоростей P . Угловая скорость вращения тела:
.


Если скорости двух точек параллельны друг другу, то ω = 0 . Скорости всех точек тела равны друг другу (в данный момент времени).

Если известна скорость какой либо точки A плоского тела и его угловая скорость ω , то скорость произвольной точки M определяется по формуле (1) , которую можно представить в виде суммы поступательного и вращательного движения:
,
где - скорость вращательного движения точки M относительно точки A . То есть скорость, которую имела бы точка M при вращении по окружности радиуса |AM| с угловой скоростью ω , если бы точка A была неподвижной.
Модуль относительной скорости:
v MA = ω |AM| .
Вектор направлен по касательной к окружности радиуса |AM| с центром в точке A .

Определение ускорений точек плоского тела выполняется с применением формулы (2) . Ускорение любой точки M равно векторной сумме ускорения некоторой точки A и ускорения точки M при вращении вокруг точки A , считая точку A неподвижной:
.
можно разложить на касательное и нормальное ускорения:
.
Касательное ускорение направлено по касательной к траектории. Нормальное ускорение направлено из точки M к точке A . Здесь ω и ε - угловая скорость и угловое ускорение тела.

Сложное движение точки

Пусть O 1 x 1 y 1 z 1 - неподвижная прямоугольная система координат. Скорость и ускорение точки M в этой системе координат будем называть абсолютной скоростью и абсолютным ускорением .

Пусть Oxyz - подвижная прямоугольная система координат, скажем, жестко связанная с неким твердым телом, движущимся относительно системы O 1 x 1 y 1 z 1 . Скорость и ускорение точки M в системе координат Oxyz будем называть относительной скоростью и относительным ускорением . Пусть - угловая скорость вращения системы Oxyz относительно O 1 x 1 y 1 z 1 .

Рассмотрим точку, совпадающую, в данный момент времени, с точкой M и неподвижной, относительно системы Oxyz (точка, жестко связанная с твердым телом). Скорость и ускорение такой точки в системе координат O 1 x 1 y 1 z 1 будем называть переносной скоростью и переносным ускорением .

Теорема о сложении скоростей

Абсолютная скорость точки равна векторной сумме относительной и переносной скоростей:
.

Теорема о сложении ускорений (теорема Кориолиса)

Абсолютное ускорение точки равно векторной сумме относительного, переносного и кориолисова ускорений:
,
где
- кориолисово ускорение.

Использованная литература:
С. М. Тарг, Краткий курс теоретической механики, «Высшая школа», 2010.

Скорость - векторная величина, характеризующая не только быстроту передвижения частицы по траектории, но и направление, в котором движется частица в каждый момент времени.

Средняя скорость за время от t 1 до t 2 равна отношению перемещения за это время к промежутку времени , за которое это перемещение имело место:

Тот факт, что это именно средняя скорость мы будем отмечать, заключая среднюю величину в угловые скобки: <...> , как это сделано выше.

Приведенная выше формула для среднего вектора скорости есть прямое следствие общего математического определения среднего значения <f(x) > произвольной функции f(x) на промежутке [a,b ]:

Действительно

Средняя скорость может оказаться слишком грубой характеристикой движения. Например, средняя скорость за период колебаний всегда равна нулю, в независимости от характера этих колебаний , по той простой причине, что за период - по определению периода - колеблющееся тело вернется в исходную точку и, следовательно, перемещение за период всегда равно нулю. По этой и ряду других причин, вводится мгновенная скорость - скорость в данный момент времени. В дальнейшем, подразумевая мгновенную скорость, будем писать просто: «скорость», опуская слова «мгновенная» или «в данный момент времени» всегда, когда это не может привести к недоразумениям.Для получения скорости в момент времени t надо сделать очевидную вещь: вычислить предел отношения при стремлении промежутка времени t 2 – t 1 к нулю. Сделаем переобозначения: t 1 = t и t 2 = t + и перепишем верхнее соотношение в виде:

Скорость в момент времени t равна пределу отношения перемещения за время к промежутку времени, за которое это перемещение имело место, при стремлении последнего к нулю

Рис. 2.5. К определению мгновенной скорости.

В данный момент мы не рассматриваем вопрос о существовании этого предела, предполагая, что он существует. Отметим, что если и есть конечное перемещение и конечный промежуток времени, то и - их предельные величины: бесконечно малое перемещение и бесконечно малый промежуток времени. Так что правая часть определения скорости

есть ничто иное как дробь - частное от деления на , поэтому последнее соотношение может быть переписано и весьма часто используется в виде

По геометрическому смыслу производной, вектор скорости в каждой точке траектории направлен по касательной к траектории в этой точке в её сторону движения.

Видео 2.1. Вектор скорости направлен по касательной к траектории. Эксперимент с точилом.

Любой вектор можно разложить по базису (для единичных векторов базиса, другими словами, единичных векторов, определяющих положительные направления осей OX ,OY ,OZ используем обозначения , , или , соответственно). Коэффициентами такого разложении являются проекции вектора на соответствующие оси. Важно следующее: в алгебре векторов доказано, что разложение по базису единственно. Разложим по базису радиус-вектор некоторой движущейся материальной точки

Учитывая постоянство декартовых единичных векторов , , , продифференцируем это выражение по времени

С другой стороны, разложение по базису вектора скорости имеет вид

опоставление двух последних выражений, с учетом единственности разложения любого вектора по базису, дает следующий результат: проекции вектора скорости на декартовы оси равны производным по времени от соответствующих координат, то есть

Модуль вектора скорости равен

Получим ещё одно, важное, выражение для модуля вектора скорости.

Уже отмечалось, что при величина || все меньше и меньше отличается от соответствующего пути (см. рис. 2). Поэтому

и в пределе (>0)

Иными словами, модуль скорости - это производная пройденного пути по времени.

Окончательно имеем:

Средний модуль вектора скорости , определяется следующим образом:

Среднее значение модуля вектора скорости равно отношению пройденного пути ко времени, в течение которого этот путь был пройден:

Здесь s(t 1 , t 2) - путь за время от t 1 до t 2 и, соответственно, s(t 0 , t 2) - путь за время от t 0 до t 2 и s(t 0 , t 2) - путь за время от t 0 до t 1 .

Средний вектор скорости или просто средняя скорость, как указано выше, равен

Отметим, что прежде всего, это вектор, его модуль - модуль среднего вектора скорости не следует путать со средним значением модуля вектора скорости. В общем случае они не равны: модуль среднего вектора вовсе не равен среднему модулю этого вектора . Две операции: вычисление модуля и вычисление среднего, в общем случае, переставлять местами нельзя.

Рассмотрим пример. Пусть точка движется в одну сторону. На рис. 2.6. показан график пройденного ею пути s в от времени (за время от 0 до t ). Используя физический смысл скорости, найти с помощью этого графика момент времени , в который мгновенная скорость равна средней путевой скорости за первые секунд движения точки.

Рис. 2.6. Определение мгновенной и средней скорости тела

Модуль скорости в данный момент времени

будучи производной пути по времени, равен угловому коэффициенту качательной к графику зависисмости точке соответствующей моменту времени t* . Средний модуль скорости за промежуток времени от 0 до t* есть угловой коэффициент секущей, проходящей через точки того же графика, соответствующие началу t = 0 и концу t = t* временного интервала. Нам надо найти такой момент времени t* , когда оба угловых коэффициента совпадают. Для этого через начало координат проводим прямую, касательную к траектории. Как видно из рисунка точка касания этой прямой графика s(t) и дает t* . В нашем примере получается

Скорость

Средняя скорость частицы характеризует быстроту ее движения за конечный промежуток времени. Неограниченно уменьшая этот промежуток, мы придем к физической величине, характеризующей быстроту движения в данный момент времени. Такая величина называется мгновенной скоростью или просто скоростью:

обозначает математическую операцию перехода к пределу. Под этим символом записывается условие, при котором выполняется данный предельный переход; в рассматриваемом случае это стремление к нулю промежутка времени. При вычислении скорости по этому правилу мы убедимся, что уменьшение промежутка времени приводит к тому, что на некотором этапе получаемые очередные значения средней скорости будут все меньше и меньше отличаться друг от друга. Поэтому на практике при нахождении скорости можно остановиться на конечном значении, достаточно малом для получения требуемой точности значения скорости.

Вектор скорости и траектория.

Рассматриваемый предельный переход имеет ясный геометрический смысл. Поскольку вектор перемещения направлен по хорде, соединяющей две точки траектории, то при сближении этих точек, происходящем при, он принимает положение, соответствующее касательной к траектории в данной точке. Это значит, что вектор скорости направлен по касательной к траектории. Так будет в любой точке траектории (рис. 14). При прямолинейной траектории движения вектор скорости направлен вдоль этой прямой.

Скорость прохождения пути.

Аналогичным переходом определяется мгновенная скорость прохождения пути:

Для плавной кривой, каковой является траектория любого непрерывного механического движения, длина дуги тем меньше отличается от длины стягивающей ее хорды, чем короче эта дуга. В пределе эти длины совпадают. Поэтому при можно считать, что. Это означает, что скорость прохождения пути равна модулю мгновенной скорости. Движение, при котором модуль скорости остается неизменным, называется равномерным. В случае прямолинейной траектории при равномерном движении вектор скорости постоянен, а в случае криволинейной траектории изменяется только его направление.

Сложение скоростей.

Если тело одновременно участвует в нескольких движениях, то его скорость равна векторной сумме скоростей каждого из этих движений. Это непосредственно следует из правила сложения перемещений: так как, то после деления на получаем

Иногда бывает удобно представить некоторое сложное движение как суперпозицию, т. е. наложение двух простых движений. В этом случае равенство (3) можно трактовать как правило разложения вектора скорости на составляющие.

Задачи.

Переправа через реку. Скорость течения в реке с параллельными берегами всюду одинакова и равна. Ширина реки (рис. 15). Катер может плыть со скоростью относительно воды. На какое расстояние s снесет катер вниз по течению реки, если при переправе нос катера направить строго поперек берегов?

Катер участвует одновременно в двух движениях: со скоростью, направленной поперек течения, и вместе с водой со скоростью которая направлена параллельно берегу. В соответствии с правилом сложения скоростей полная скорость катера относительно берегов равна векторной сумме (рис. 16). Очевидно, что движение катера происходит по прямой, направленной вдоль вектора. Искомое расстояние s, на которое снесет катер при переправе, можно найти из подобия треугольника, образованному векторами скоростей:


Эту задачу легко решить и не прибегая к сложению векторов скоростей. Очевидно, что расстояние s равно произведению скорости течения на время в течение которого катер пересекает реку. Это время можно найти, разделив ширину реки на скорость движения катера поперек реки. Таким образом, находим Рис. 16. Сложение скоростей при переправе через.В этой простой задаче второй способ решения предпочтительнее, так как он проще. Однако уже при небольшом усложнении условия задачи становятся отчетливо видны преимущества первого способа, основанного на сложении векторов скоростей.

2. Переправа поперек реки. Предположим, что теперь нам нужно переправиться на катере через ту же реку точно поперек, т. е. попасть в точку В, лежащую напротив начальной точки А (рис. 17). Как нужно направить нос катера при переправе? Сколько времени займет такая переправа?Решение. В рассматриваемом случае полная скорость v катера относительно берегов, равная векторной сумме скоростей должна быть направлена поперек реки.

Из рис. 17 сразу видно, что вектор, вдоль которого и смотрит нос катера, должен отклоняться на некоторый угол а вверх по течению реки от направления. Синус этого угла равен отношению модулей скоростей течения и катера относительно воды. Переправа поперек реки без сноса возможна только в том случае, когда скорость катера относительно воды больше скорости течения. Это сразу видно либо из треугольника скоростей на рис. 17 (гипотенуза всегда больше катета), либо из формулы (синус угла а должен быть меньше единицы).Время переправы найдем, разделив ширину реки на полную скорость катера по теореме Пифагора.

3. Снос при быстром течении.

Предположим теперь, что скорость катера относительно воды меньше скорости течения: В таком случае переправа без сноса невозможна. Как следует направить нос катера при переправе, чтобы снос получился минимальным? На какое расстояние этом снесет катер? Решение. Полная скорость относительно берегов во всех рассматриваемых случаях дается формулой. Однако теперь нагляднее выполнить сложение векторов и по правилу треугольника (рис. 18) первым изображаем век гор для которого мы знаем модуль направление, а затем к его концу пристраиваем начало вектора известен только модуль, направление еще предстоит выбрать. Этот выбор нужно сделать так, вектор результирующей скорости как можно меньше отклонялся от направления поперек реки.

Рис. 19. Определение курса (направление вектора) переправы минимальным сносом 18. Сложение скоростей переправе Конец любом направлении должен лежать на окружности радиуса центр которой совпадает концом вектора. Эта окружность показана Так условию задачи то точка соответствующая началу лежит вне этой окружности. Из рисунка видно, что образует прямой наименьший угол тогда, когда он направлен касательной Следовательно, перпендикулярен вектору треугольник прямоугольный. Таким образом, направлять вверх течению под углом линии Синус этого угла дастся выражением Траектория направлена вдоль вектора, т.е. она перпендикулярна направлению, в котором смотрит катера. Это значит, своей траектории катер движется боком. другом берегу реки причалит точке, до найти из подобия треугольников. Модуль находится теореме Пифагора. результате получаем

4. Лодка тросе. Лодку подтягивают за привязанный носу трос, наматывая равномерно вращающийся барабан Барабан установлен высоком берегу. какой скоростью лодка тот момент, трос горизонтом? Трос выбирается барабаном скоростью.

Решение.

Точка троса, где он привязан к лодке, движется с той же скоростью, что и лодка. Эта скорость v направлена горизонтально. Чтобы связать ее со скоростью выбирания троса, нужно сообразить, что движение троса сводится к повороту вокруг точки В, где он касается барабана, и скольжению вдоль собственного направления, т. е. прямой. Поэтому естественно разложить скорость точки на две составляющие, направленные вдоль и поперек троса (рис. 21). Скорость, направленная поперек, связана с поворотом троса. Модуль скорости направленной вдоль троса, - это и есть данное в условии задачи значение скорости.

По мере приближения лодки к берегу угол а становится больше. Это значит, что cos а убывает и искомая скорость возрастает. Задача для самостоятельного решения Человек находится в поле на расстоянии от прямолинейного участка шоссе. Слева от себя он замечает движущийся по шоссе автомобиль. В каком направлении следует бежать к шоссе, чтобы выбежать на дорогу впереди автомобиля и как можно дальше от него? Скорость автомобиля и, скорость человека.

Объясните, почему вектор скорости всегда направлен по касательной к траектории.

В некоторых случаях траектория движения частицы может иметь изломы. Приведите примеры таких движений. Что можно сказать о направлении скорости в точках, где траектория имеет излом?

В случае непрерывного механического движения вектор скорости не испытывает скачков ни по модулю, ни по направлению. Появление скачков скорости всегда связано с некоторой идеализацией реального процесса. Какие идеализации присутствовали в приведенных вами примерах траекторий с изломами?

Найдите ошибку в приводимом ниже решении задачи 4. Разложим скорость, точки троса на вертикальную и горизонтальную составляющие (рис. 22). Горизонтальная составляющая это и есть искомая скорость лодки. Поэтому и (неверно!).

Скорость как производная.

Вернемся к выражению (1) для мгновенной скорости. При движении частицы ее радиус-вектор г изменяется, т. е. является некоторой функцией времени:. Перемещение Дг за промежуток времени At представляет собой разность радиусов-векторов в моменты времени. Поэтому формулу (1) можно переписать в виде В математике такую величину называют производной от функции по времени Для нее используют следующие обозначения. Последнее обозначение (точка над буквой) характерно именно для производной по времени. Отметим, что в данном случае производная представляет собой вектор, так как получается в результате дифференцирования векторной функции по скалярному аргументу. Для модуля мгновенной скорости в соответствии справедливо выражение в начале статьи.

Скорость является одной из основных характеристик . Она выражает саму суть движения, т.е. определяет то отличие, которое имеется между телом неподвижным и телом движущимся.

Единицей измерения скорости в системе СИ является м/с .

Важно помнить, что скорость – величина векторная. Направление вектора скорости определяется по движения. Вектор скорости всегда направлен по касательной к траектории в той точке, через которую проходит движущееся тело (рис.1).

К примеру, рассмотрим колесо движущегося автомобиля. Колесо вращается и все точки колеса движутся по окружностям. Брызги, разлетающиеся от колеса, будут лететь по касательным к этим окружностям, указывая направления векторов скоростей отдельных точек колеса.

Таким образом, скорость характеризует направление движения тела (направление вектора скорости) и быстроту его перемещения (модуль вектора скорости).

Отрицательная скорость

Может ли скорость тела быть отрицательной? Да, может. Если скорость тела отрицательна, это значит, что тело движется в направлении, противоположном направлению оси координат в выбранной системе отсчета. На рис.2 изображено движение автобуса и автомобиля. Скорость автомобиля отрицательна, а скорость автобуса положительна. Следует помнить, что говоря о знаке скорости, мы имеем ввиду проекцию вектора скорости на координатную ось.

Равномерное и неравномерно движение

В общем случае скорость зависит от времени. По характеру зависимости скорости от времени, движение бывает равномерное и неравномерно.

ОПРЕДЕЛЕНИЕ

Равномерное движение – это движение с постоянной по модулю скоростью.

В случае неравномерного движения говорят о :

Примеры решения задач по теме «Скорость»

ПРИМЕР 1

Задание Автомобиль прошел первую половину пути между двумя населенными пунктами со скоростью 90 км/ч, а вторую половину – со скоростью 54 км/ч. Определите среднюю скорость автомобиля.
Решение Было бы неверным вычислять среднюю скорость автомобиля как среднее арифметическое двух указанных скоростей.

Воспользуемся определением средней скорости:

Так как предполагается прямолинейное равномерное движение, знаки векторов можно опустить.

Время, потраченное автомобилем на прохождение всего отрезка пути:

где — время, затраченное на прохождение первой половины пути, а — время, затраченное на прохождение второй половины пути.

Суммарное перемещение равно расстоянию между населенными пунктами, т.е. .

Подставив эти соотношения в формулу для средней скорости, получим:

Переведем скорости на отдельных участках в систему СИ:

Тогда средняя скорость автомобиля:

(м/с)

Ответ Средняя скорость автомобиля равна 18,8 м/с

ПРИМЕР 2

Задание Автомобиль проехал 10 секунд со скоростью 10 м/с, а затем ехал еще 2 минуты со скоростью 25 м/с. Определить среднюю скорость автомобиля.
Решение Сделаем рисунок.


error: Контент защищен !!