Презентация на тему "схема горнера". III

Пусть имеется простой двухчлен вида ax + b = 0. Решить его не представляет никакого труда. Нужно просто неизвестное перенести в одну сторону, а коэффициенты в другую. В итоге x = - b/a. Рассматриваемое уравнение можно усложнить, добавив квадрат ax2 + bx + c = 0. Решается оно с помощью нахождения дискриминанта. Если он больше нуля, то решения будет два, при его равенстве нулю - корень только один, а когда он меньше, то решений и вовсе нет.

Следующий тип уравнения пусть содержит третью степень ax3 + bx2 + c + d = 0. Это равенство у многих вызывает затруднения. Хотя и существуют различные способы, позволяющие решить такое уравнение, например, формула Кордана, но их уже нельзя применять для степеней пятого и высших порядков. Поэтому математики задумывались об универсальном способе, с помощью которого можно было бы вычислять уравнения любой сложности.

В школе обычно предлагают использовать метод группировки и анализа, при котором многочлен можно разложить на хотя бы два множителя. Для кубического уравнения можно записать: (x - x0) (ax2 + bx + c) = 0. Затем используют то, что произведение будет равно нулю лишь в том случае, если линейный двучлен или квадратное уравнение равняется ему. Затем выполняют стандартное решение. Проблема при вычислении такого типа приведённых равенств возникает во время поиска x0. Вот в этом случае и поможет схема Горнера.

Алгоритм, предложенный Горнером, на самом деле был открыт раньше итальянским математиком и доктором медицины Паоло Руффини. Он первый доказал невозможность нахождения радикала в выражениях пятой степени. Но его работа содержала много противоречий, которые не позволили её принять математическим миром учёных. Основываясь на его трудах, в 1819 году британец Уильям Джордж Горнер опубликовал способ приближённого нахождения корней многочлена. Эта работа была напечатана Королевским научным обществом и получила название метод Руффини-Горнера.

После шотландец Огастес де Морган расширил возможности использования метода. Способ нашёл применение в теоретико-множественных соотношениях и теории вероятности. По сути, схема является алгоритмом для вычисления частного и остатка отношения записи Р (х) на х-с.

Принцип метода

Впервые учащихся знакомят со способом нахождения корней с использованием схемы Горнера в высших классах средней школы на уроках алгебры. Объясняют её на примере решения уравнения третьей степени: x3 + 6x - x - 30 = 0. При этом в условии задачи дано, что корнем этого уравнения является цифра два. Задача заключается в том, чтобы определить другие корни.

Обычно это делается следующим образом. Если многочлен p (x) имеет корень x0, то p (x) можно представить как произведение разности икс минус икс нулевое на некий другой многочлен q (x), степень которого будет на единицу меньше. Выделяют нужный многочлен обычно способом деления. Для рассматриваемого примера уравнение будет иметь вид: (x3 + 6x - x - 30) / (x - x2). Деление лучше выполнять «уголком». В итоге получится выражение: x 2 + 8x + 15 .

Таким образом, искомое выражение можно переписать в виде (x - 2)* (x 2 + 8x + 15) = 0. Далее, для того чтобы найти решение, нужно выполнить следующее:

  • Найти корни в первом члене равенства, приравняв его к нулю: x - 2 = 0. Отсюда x = 2, что также следует из условия.
  • Решить квадратное уравнение, приравняв второй член многочлена к нулю: x 2 + 8x + 15 = 0. Найти корни можно через дискриминант или по формулам Виета. Так можно записать, что (x+3) * (x+5) = 0, то есть икс один равняется трём, а икс два - минус пяти.

Все три корня найдены. Но тут возникает резонный вопрос, где же используется в примере схема Горнера? Так вот, всё это громоздкое вычисление можно заменить на скоростной алгоритм решения. Состоит он из простых действий. Вначале нужно начертить таблицу, содержащую несколько столбцов и строчек. Начиная со второго столбца начальной строчки, записывают коэффициенты, стоящие в уравнении исходного многочлена. В первом столбике ставят то число, на которое будет выполняться деление, то есть потенциальные члены решения (х0).

После того как в таблицу записали выбранное х0, заполнение происходит по следующему принципу:

  • в первый столбец сносится просто то, что стоит в верхнем элементе второго столбика;
  • для нахождения следующего числа нужно снесённое число умножить на выбранное x0 и добавить стоящее число в заполняемом столбике сверху;
  • аналогичные операции проделывают до окончательного заполнения всех ячеек;
  • строки в последнем столбике равные нулю и будут искомым решением.

Для рассматриваемого примера при подстановке двойки строчка будет состоять из ряда: 2, 1, 8, 15, 0. Таким образом, находятся все члены. При этом схема работает для любого порядка степенного уравнения.

Пример использования

Для того чтобы понять, как пользоваться схемой Горнера, нужно подробно рассмотреть типовой пример . Пусть требуется определить кратность корня х0 многочлена p (x) = x 5 - 5x 4 + 7x 3 - 2x 2 + 4x - 8. Часто в задачах приходится подбирать корни методом перебора, но для того чтобы сэкономить время, будем считать, что они уже известны и их нужно просто проверить. Тут следует понимать, что применяя схему, расчёт всё равно будет быстрее, чем использование других теорем или метода понижения.

Согласно алгоритму решения, в первую очередь нужно начертить таблицу. В первой строчке указывают основные коэффициенты. Для уравнения необходимо будет начертить восемь столбцов. Затем узнать, сколько раз в исследуемом многочлене поместится х0 = 2. Во второй строчке второго столбца просто сносят коэффициент. Для рассматриваемого случая он будет равняться единице. В находящейся рядом ячейке значение вычисляют как 2 *1 -5 = -3. В следующей: 2 *(-3) + 7 = 1. Таким же образом заполняют оставшиеся ячейки.

Как видно, минимум один раз двойка помещается в многочлен. Теперь нужно проверить, является ли двойка корнем низшего полученного выражения. После выполнения аналогичных действий в таблице должен получиться следующий ряд: 1, -1, -1. -2, 0. Фактически это квадратное уравнение, которое также необходимо проверить. В результате вычисленный ряд будет состоять из 1, 1, 1, 0.

В последнем выражении двойка не может быть рациональным решением. То есть в исходном многочлене цифра два используется три раза, а значит можно записать: (x - 2) 3 * (x 2 + x + 1). То, что двойка не является корнем квадратного выражения, можно понять по следующим фактам:

  • свободный коэффициент не делится на два;
  • все три коэффициента положительны, значит, что график неравенства будет увеличиваться начиная с двух.

Таким образом, применение системы позволяет избавиться от использования сложных числителей и делителей. Все действия сводятся к простому перемножению целых чисел и выделения нулей.

Пояснение способа

Подтверждение справедливости существования схемы Горнера объясняется рядом факторов. Представим, что есть многочлен третьей степени: x3 + 5x – 3x + 8. Из этого выражения икс можно вынести за скобку: x * (x2 + 5x – 3) + 8. Из полученной формулы можно снова вынести икс: x * (x * (x + 5) – 3) + 8 = x * (x* ((x * 1) + 5) – 3) + 8.

По сути, чтобы посчитать полученное выражение, можно подставить предполагаемое значение икс в первую внутреннюю скобку и выполнить алгебраические операции, согласно старшинству. Фактически это все те действия, которые выполняются в методе Горнера. При этом числа 8, -3, 5, 1 - это коэффициенты исходного многочлена.

Пусть имеется многочлен P (x) = an * x n + an -1 * x n-1 + 1x1 + a0 = 0. Если у этого выражения есть некий корень x = x0, то это означает, что рассматриваемое выражение можно переписать в виде: P (x) = (x-x0) * Q(x). Это следствие из теоремы Безу. Здесь важно то, что степень многочлена Q(x) будет на единицу меньше, чем имеет P(x). Следовательно, его можно расписать в меньшем виде: P (x) = (x-x0) * (bn-1 * x n-1 + bn-2 * x n-2 + b0) = 0. Две конструкции тождественно равны между собой.

А это значит, что все коэффициенты рассматриваемых многочленов равны, в частности, (x0)b) = a0. Используя это, можно утверждать, что какими бы ни были числа a0 и b0, икс всегда является делителем, то есть a0 всегда можно разделить на корни многочлена. Иными словами, найти рациональные варианты решения.

Общий случай, объясняющий метод, будет выглядеть следующим образом: an * x n + an-1 * x n-1 + … + a1x + a0 = x * (an * x n-1 + an-1 * x n-2 + … + a1) + a0 = x * (x * (... (an * x + an -1)+ an-2...an-m)+ a0). То есть схема работает вне зависимости от степени многочлена. Она универсальная. При этом подходит как для неполных уравнений, так и полных. Это инструмент, позволяющий проверить х0 на корень. Если же он не является решением, то число, оставшееся в конце, будет остатком от деления рассматриваемого многочлена.

В математике правильной записью метода будет выражение: Pn(x) = ∑i = 0naixn−i = a0xn + a1xn − 1 + a2xn − 2 +…+ an − 1x + an. В нём значение i изменяется от нуля до эн, а сам многочлен делится на бином x – a. После выполнения этого действия получается выражение, степень которого на единицу меньше от исходного. Другими словами, определяется как n – 1.

Расчёт на онлайн-калькуляторе

Использовать ресурсы, предоставляющие доступ к вычислениям корней высших степеней многочленов, довольно удобно. Чтобы воспользоваться такими сайтами, особые знания в математике или программировании иметь не нужно. Всё, что необходимо пользователю - это доступ к интернету и браузер, поддерживающий работу Java скриптов.

Существует несколько десятков таких сайтов. При этом некоторые из них могут просить за предоставленное решение денежное вознаграждение. Хотя большинство ресурсов бесплатны и не только рассчитывают корни в степенных уравнениях, но и предоставляют подробное решение с комментариями. Кроме этого, на страницах расчётчиков любой желающий сможет ознакомиться с кратким теоретическим материалом и рассмотреть решение примеров различной сложности. Так что вопросов с понятием, откуда взялся ответ, возникнуть не должно.

Из всего множества считающих онлайн–калькуляторов по схеме Горнера можно выделить следующие три:

  • Kontrolnaya-rabota. Сервис ориентирован на старшеклассников, но по своим возможностям довольно функционален. С его помощью можно очень быстро проверить корни на соответствие.
  • Nauchniestati. Приложение позволяет определить корни методом Горнера буквально за две-три секунды. На сайте можно найти всю необходимую теорию. Для выполнения расчёта нужно ознакомиться с правилами ввода математической формулы, указанными тут же на сайте.
  • Сalc. Используя этот сайт, пользователь сможет получить подробное описание решения с изображением таблицы. Для этого в специальную форму необходимо ввести уравнение и нажать кнопку «решение».

Программы, используемые для расчётов, отличаются интуитивно понятным интерфейсом и не содержат рекламного и вредоносного кода. Выполнив несколько вычислений на этих ресурсах, пользователь вполне сможет самостоятельно научится определять корни, используя метод Горнера.

При этом онлайн-калькуляторы полезны не только учащимся, но и инженерам, проводящим сложные вычисления. Ведь самостоятельный расчёт требует внимания и сосредоточенности. Любая незначительная ошибка в итоге приведёт к неверному ответу. В то же время появление ошибки при вычислениях с помощью онлайн-расчётчиков невозможно.

Многочлен вида
a n x n + a n-1 x n-1 + a n-2 x n-2 + ... + a 1 x + a 0
можно разложить на множители по схеме Горнера, если известен хотя бы 1 его корень.

Разберем деление по схеме Горнера на примере:

2x 4 + 9x 3 - 10x 2 - 27x - 10

Для начала нужно методом подбора найти один корень. Обычно он является делителем свободного члена. В данном случае делителями числа -10 являются ±1, ±2, ±5, ±10. Начнем их подставлять по-очереди:

1: 2 + 9 - 10 - 27 - 10 = -36 ⇒ число 1

-1: 2 - 9 - 10 + 27 - 10 = 0 ⇒ число -1 является корнем многочлена

Мы нашли 1 из корней многочлена. Корнем многочлена является -1, а значит исходный многочлен должен делиться на x + 1 . Для того, чтобы выполнить деление многочленов, воспользуемся схемой Горнера:

2 9 -10 -27 -10
-1

В верхней строке выставляются коэффициенты исходного многочлена. В первой ячейке второй строки ставится найденный нами корень -1. Во второй строке пишутся коэффициенты многочлена, который получится в результате деления. Они считаются так:

2 9 -10 -27 -10
-1 2
Во вторую ячейку второй строки запишем число 2, просто перенеся его из соответствующей ячейки первой строки.
2 9 -10 -27 -10
-1 2 7
-1 ∙ 2 + 9 = 7
2 9 -10 -27 -10
-1 2 7 -17
-1 ∙ 7 - 10 = -17
2 9 -10 -27 -10
-1 2 7 -17 -10
-1 ∙ (-17) - 27 = -10
2 9 -10 -27 -10
-1 2 7 -17 -10 0
-1 ∙ (-10) - 10 = 0

Последнее число - это остаток от деления. Если он равен 0, значит мы все верно посчитали.

2x 4 + 9x 3 - 10x 2 - 27x - 10 = (x + 1)(2x 3 + 7x 2 - 17x - 10)

Но это еще не конец. Можно попробовать разложить таким же способом многочлен 2x 3 + 7x 2 - 17x - 10.

Опять ищем корень среди делителей свободного члена. Как мы уже выяснили, делителями числа -10 являются ±1, ±2, ±5, ±10.

1: 2 + 7 - 17 - 10 = -18 ⇒ число 1 не является корнем многочлена

-1: -2 + 7 + 17 - 10 = 12 ⇒ число -1 не является корнем многочлена

2: 2 ∙ 8 + 7 ∙ 4 - 17 ∙ 2 - 10 = 0 ⇒ число 2 является корнем многочлена

Напишем найденный корень в нашу схему Горнера и начнем заполнять пустые ячейки:

2 9 -10 -27 -10
-1 2 7 -17 -10 0
2 2
Во вторую ячейку третьей строки запишем число 2, просто перенеся его из соответствующей ячейки второй строки.
2 9 -10 -27 -10
-1 2 7 -17 -10 0
2 2 11
2 ∙ 2 + 7 = 11
2 9 -10 -27 -10
-1 2 7 -17 -10 0
2 2 11 5
2 ∙ 11 - 17 = 5
2 9 -10 -27 -10
-1 2 7 -17 -10 0
2 2 11 5 0
2 ∙ 5 - 10 = 0

Таким образом мы исходный многочлен разложили на множители:

2x 4 + 9x 3 - 10x 2 - 27x - 10 = (x + 1)(x - 2)(2x 2 + 11x + 5)

Многочлен 2x 2 + 11x + 5 тоже можно разложить на множители. Для этого можно решить квадратное уравнение через дискриминант , а можно поискать корень среди делителей числа 5. Так или иначе, мы придем к выводу, что корнем этого многочлена является число -5

2 9 -10 -27 -10
-1 2 7 -17 -10 0
2 2 11 5 0
-5 2
Во вторую ячейку четвертой строки запишем число 2, просто перенеся его из соответствующей ячейки третьей строки.
2 9 -10 -27 -10
-1 2 7 -17 -10 0
2 2 11 5 0
-5 2 1
-5 ∙ 2 + 11 = 1
2 9 -10 -27 -10
-1 2 7 -17 -10 0
2 2 11 5 0
-5 2 1 0
-5 ∙ 1 + 5 = 0

Таким образом мы исходный многочлен разложили на линейные множители.

4x 3 - 19x 2 + 19x + 6 = 0

Для начала нужно методом подбора найти один корень. Обычно он является делителем свободного члена. В данном случае делителями числа 6 являются ±1, ±2, ±3, ±6.

1: 4 - 19 + 19 + 6 = 10 ⇒ число 1

-1: -4 - 19 - 19 + 6 = -36 ⇒ число -1 не является корнем многочлена

2: 4 ∙ 8 - 19 ∙ 4 + 19 ∙ 2 + 6 = 0 ⇒ число 2 является корнем многочлена

Мы нашли 1 из корней многочлена. Корнем многочлена является 2, а значит исходный многочлен должен делиться на x - 2 . Для того, чтобы выполнить деление многочленов, воспользуемся схемой Горнера:

4 -19 19 6
2

В верхней строке выставляются коэффициенты исходного многочлена. В первой ячейке второй строки ставится найденный нами корень 2. Во второй строке пишутся коэффициенты многочлена, который получится в результате деления. Они считаются так:

4 -19 19 6
2 4
Во вторую ячейку второй строки запишем число 1, просто перенеся его из соответствующей ячейки первой строки.
4 -19 19 6
2 4 -11
2 ∙ 4 - 19 = -11
4 -19 19 6
2 4 -11 -3
2 ∙ (-11) + 19 = -3
4 -19 19 6
2 4 -11 -3 0
2 ∙ (-3) + 6 = 0

Последнее число - это остаток от деления. Если он равен 0, значит мы все верно посчитали.

Таким образом мы исходный многочлен разложили на множители:

4x 3 - 19x 2 + 19x + 6 = (x - 2)(4x 2 - 11x - 3)

И теперь, всего лишь, осталось найти корни квадратного уравнения

4x 2 - 11x - 3 = 0
D = b 2 - 4ac = (-11) 2 - 4 ∙ 4 ∙ (-3) = 169
D > 0 ⇒ уравнение имеет 2 корня

Мы нашли все корни уравнения.

При решении уравнений и неравенств нередко возникает необходимость разложить на множители многочлен, степень которого равна трем или выше. В этой статье мы рассмотрим, каким образом это сделать проще всего.

Как обычно, обратимся за помощью к теории.

Теорема Безу утверждает, что остаток от деления многочлена на двучлен равен .

Но для нас важна не сама теорема, а следствие из нее:

Если число является корнем многочлена , то многочлен делится без остатка на двучлен .

Перед нами стоит задача каким-то способом найти хотя бы один корень многочлена, потом разделить многочлен на , где - корень многочлена. В результате мы получаем многочлен, степень которого на единицу меньше, чем степень исходного. А потом при необходимости можно повторить процесс.

Эта задача распадается на две: как найти корень многочлена, и как разделить многочлен на двучлен .

Остановимся подробнее на этих моментах.

1. Как найти корень многочлена.

Сначала проверяем, являются ли числа 1 и -1 корнями многочлена.

Здесь нам помогут такие факты:

Если сумма всех коэффициентов многочлена равна нулю, то число является корнем многочлена.

Например, в многочлене сумма коэффициентов равна нулю: . Легко проверить, что является корнем многочлена.

Если сумма коэффициентов многочлена при четных степенях равна сумме коэффициентов при нечетных степенях, то число является корнем многочлена. Свободный член считается коэффициентом при четной степени, поскольку , а - четное число.

Например, в многочлене сумма коэффициентов при четных степенях : , и сумма коэффициентов при нечетных степенях : . Легко проверить, что является корнем многочлена.

Если ни 1, ни -1 не являются корнями многочлена, то двигаемся дальше.

Для приведенного многочлена степени (то есть многочлена, в котором старший коэффициент - коэффициент при - равен единице) справедлива формула Виета:

Где - корни многочлена .

Есть ещё формул Виета, касающихся остальных коэффициентов многочлена, но нас интересует именно эта.

Из этой формулы Виета следует, что если корни многочлена целочисленные, то они являются делителями его свободного члена, который также является целым числом.

Исходя из этого, нам надо разложить свободный член многочлена на множители, и последовательно, от меньшего к большему, проверять, какой из множителей является корнем многочлена.

Рассмотрим, например, многочлен

Делители свободного члена: ; ; ;

Сумма всех коэффициентов многочлена равна , следовательно, число 1 не является корнем многочлена.

Сумма коэффициентов при четных степенях :

Сумма коэффициентов при нечетных степенях :

Следовательно, число -1 также не является корнем многочлена.

Проверим, является ли число 2 корнем многочлена: , следовательно, число 2 является корнем многочлена. Значит, по теореме Безу, многочлен делится без остатка на двучлен .

2. Как разделить многочлен на двучлен.

Многочлен можно разделить на двучлен столбиком.

Разделим многочлен на двучлен столбиком:


Есть и другой способ деления многочлена на двучлен - схема Горнера.


Посмотрите это видео, чтобы понять, как делить многочлен на двучлен столбиком, и с помощью схемы Горнера.

Замечу, что если при делении столбиком какая-то степень неизвестного в исходном многочлене отсутствует, на её месте пишем 0 - так же, как при составлении таблицы для схемы Горнера.

Итак, если нам нужно разделить многочлен на двучлен и в результате деления мы получаем многочлен , то коэффициенты многочлена мы можем найти по схеме Горнера:


Мы также можем использовать схему Горнера для того, чтобы проверить, является ли данное число корнем многочлена: если число является корнем многочлена , то остаток от деления многочлена на равен нулю, то есть в последнем столбце второй строки схемы Горнера мы получаем 0.

Используя схему Горнера, мы "убиваем двух зайцев": одновременно проверяем, является ли число корнем многочлена и делим этот многочлен на двучлен .

Пример. Решить уравнение:

1. Выпишем делители свободного члена, и будем искать корни многочлена среди делителей свободного члена.

Делители числа 24:

2. Проверим, является ли число 1 корнем многочлена.

Сумма коэффициентов многочлена , следовательно, число 1 является корнем многочлена.

3. Разделим исходный многочлен на двучлен с помощью схемы Горнера.

А) Выпишем в первую строку таблицы коэффициенты исходного многочлена.

Так как член, содержащий отсутствует, в том столбце таблицы, в котором должен стоять коэффициент при пишем 0. Слева пишем найденный корень: число 1.

Б) Заполняем первую строку таблицы.

В последнем столбце, как и ожидалось, мы получили ноль, мы разделили исходный многочлен на двучлен без остатка. Коэффициенты многочлена, получившегося в результате деления изображены синим цветом во второй строке таблицы:

Легко проверить, что числа 1 и -1 не являются корнями многочлена

В) Продолжим таблицу. Проверим, является ли число 2 корнем многочлена :

Так степень многочлена, который получается в результате деления на единицу меньше степени исходного многочлена, следовательно и количество коэффициентов и количество столбцов на единицу меньше.

В последнем столбце мы получили -40 - число, не равное нулю, следовательно, многочлен делится на двучлен с остатком, и число 2 не является корнем многочлена.

В) Проверим, является ли число -2 корнем многочлена . Так как предыдущая попытка оказалась неудачной, чтобы не было путаницы с коэффициентами, я сотру строку, соответствующую этой попытке:


Отлично! В остатке мы получили ноль, следовательно, многочлен разделился на двучлен без остатка, следовательно, число -2 является корнем многочлена. Коэффициенты многочлена, который получается в результате деления многочлена на двучлен в таблице изображены зеленым цветом.

В результате деления мы получили квадратный трехчлен , корни которого легко находятся по теореме Виета:

Итак, корни исходного уравнения :

{}

Ответ: {}

Обычно многочлен представлен в виде:

$f(x)=\sum\limits_{k=0}^{n} a_k x^k$

f(x) = a 0 + a 1 x + a 2 x 2 + ... + a k x k

Где a k это действительные числа, представляющие коэффициенты многочлена и
x k это переменные многочлена.

Вышеупомянутый многочлен называют многочленом n -ой степени, то есть deg(f(x)) = n , где n представляет наивысшую степень переменной.

Схема Горнера для деления многочлена - это алгоритм упрощения вычисления значения многочлена f(x) при определённой величине x = x 0 методом деления многочлена на одночлены (многочлены 1 ой степени). Каждый одночлен включает в себя максимум один процесс умножения и один процесс сложения. Результат, полученный из одного одночлена, прибавляют к результату полученному от следующего одночлена и так далее в аккумулятивной манере. Такой процесс деления также называют синтетическим делением.

Чтобы объяснить вышесказанное, давайте перепишем многочлен в развёрнутой форме;

f(x 0) = a 0 + a 1 x 0 + a 2 x 0 2 + ... + a n x 0 n

Это также может быть записано как:

f(x 0) = a 0 + x 0 (a 1 + x 0 (a 2 + x 0 (a 3 + ... + (a n-1 + a n x 0)....)

Алгоритм, предложенный данной схемой, основан на нахождении значений одночленов образованных выше, начиная с тех которые заключены в больше скобок и двигаясь наружу, для нахождения значения одночленов во внешних скобках.

Алгоритм приводится в действие, следуя нижеизложенным шагам:

1. Дано k = n
2. Пусть b k = a k
3. Пусть b k - 1 = a k - 1 + b k x 0
4. Пусть k = k - 1
5. Если k ≥ 0 , то вернуться на шаг 3
иначе Конец

Этот алгоритм может быть также графически визуализирован, принимая во внимание данный многочлен 5 ой степени:

f(x) = a 0 + a 1 x + a 2 x 2 + a 3 x 3 + a 4 x 4 + a 5 x 5

значение которого находится как x = x 0 , путём перестановки его следующим образом:

f(x 0) = a 0 + x 0 (a 1 + x 0 (a 2 + x 0 (a 3 + x 0 (a 4 + a 5 x 0))))

Другим способом представить результаты используя этот алгоритм можно в виде данной ниже таблицы:

Таким образом, f(2) = 83.

Почему нам это необходимо делать?

Обычно, находя значения многочлена при определённом значении переменной, мы привыкли подставлять это значение в многочлен и производить вычисления. Мы также можем разработать копьютерную программу для математического вычисления, которая является необходимостью, когда мы имеем дело со сложными многочленами высоких степеней.

Метод, с помощью которого компьютер обрабатывает проблему, зависит, в основном, от того как Вы, как программист, описываете это компьютеру. Вы можете разработать Вашу программу для нахождения значения многочлена методом прямой подстановки значения переменной или использовать синтетическое деление, данное в схеме Горнера. Единственное отличие между этими двумя подходами это скорость, с которой компьютер будет находить решение том или ином случае.

Преимущество схемы Горнера в том, что оно снижает количество операций умножения. Принимая во внимание то, что время обработки каждого процесса умножения от 5 до 20 раз больше, чем время обработки процесса сложения, Вы можете утверждать, что построение программы для нахождения значения многочлена по схеме Горнера существенно уменьшит затрачиваемое компьютером время вычисления.



error: Контент защищен !!