Алканы. Конспект урока на тему "Алканы

Утверждаю:

Заместитель директора

по учебной работе

Г.Г.Исмагулова

Группа: 5 Дата: 23.01.2017 г

Тема : Алканы. Гомологический ряд, изомеры. Номенклатура алканов. Строение алканов. Нахождение в природе и получение алканов. Свойства алканов.

Цели:

- сформировать умение составлять структурные формулы органических соединений, используя алгоритм построения, устанавливать причинно-следственные связи между составом, строением и применением веществ;

Отработать навыки пользования номенклатурой IUPAC применительно к алканам;

Ознакомить учащихся с изомерией предельных УВ, их физическими свойствами и основными способами получения.

Тип урока: урок усвоения новых знаний.

Оборудование и реактивы : шаростержневые и объёмные модели молекул алканов, образцы парафина, жидкие алканы (пентан, гексан) бензин,

Ход урока

І. Организационный момент.

ІІ. Актуализация знаний и умений. Проверка домашнего задания.

Фронтальный опрос класса по теории строения органического вещества А.М.Бутлерова

    Вещества делятся на две большие группы. Какие? (органические и неорганические)

    В состав органических соединений входит атом? (углерода)

    Органическая химия – это …………..? (химия углеводородов и их производных)

    Источники органических веществ? (делятся на две большие группы – природные и синтетические)

    Что относятся к природным органическим соединениям и к синтетическим органическим веществам? (природный газ, нефть, уголь, торф, сланец, озокерит, продукты лесного хозяйства, хлопок, продукты сельского хозяйства и т.д.), (получают искуственно, путем органического синтеза)

    Основные положения теории химического строения А. М. Бутлерова.

    Что называется изомерами?

    Родоначальником всех органических соединений являются? (углеводороды)

    Какие соединения называются углеводородами и какие их виды вам известны?

    Алифатические углеводороды бывают насыщенные и ненасыщенные. Что относятся к насыщенным и ненасыщенным углеводородам?

III . Изучение нового материала.

Алка́ны – насыщенные углеводороды, в молекулах которых атомы углерода соединены между собой только одинарной сигма – связью и которые имеют общую формулу: CnH2n+2.

Алканы называются парафинами, или углеводородами ряда метана. Первым членом алканов является метан, поэтому их называют углеводородами ряда метана.

Алканы являются насыщенными углеводородами и содержат максимально возможное число атомов водорода. Каждый атом углерода в молекулах алканов находится в состоянии sp3-гибридизации - все 4 гибридные орбитали атома С равны по форме и энергии, 4 электронных облака направлены в вершины тетраэдра под углами 109°28". За счёт одинарных связей между атомами С возможно свободное вращение вокруг углеродной связи. Тип углеродной связи - σ-связи, связи малополярны и плохо поляризуемы. Длина углеродной связи - 0,154 нм.

Простейшим представителем класса является метан (CH4).

По номенклатуре ИЮПАК названия алканов образуются при помощи суффикса -ан путём добавления к соответствующему корню от названия углеводорода. Выбирается наиболее длинная неразветвлённая углеводородная цепь так, чтобы у наибольшего числа заместителей был минимальный номер в цепи. В названии соединения цифрой указывают номер углеродного атома, при котором находится замещающая группа или гетероатом, затем название группы или гетероатома и название главной цепи. Если группы повторяются, то перечисляют цифры, указывающие их положение, а число одинаковых групп указывают приставками ди-, три-, тетра-. Если группы неодинаковые, то их названия перечисляются в алфавитном порядке.

Названия алканов.

Слово «алкан» того же происхождения, что и «алкоголь». Устаревший термин «парафин» произошел от латинских parum – мало, незначительно и affinis – родственный; парафины обладают малой реакционной способностью по отношению к большинству химических реагентов. Многие парафины являются гомологами; в гомологическом ряду алканов каждый последующий член отличается от предыдущего на одну метиленовую группу СН 2 . Термин происходит от греческого homologos – соответственный, подобный.

Гомологи – вещества, имеющие одинаковую общую формулу, сходные по химическим свойствам, но отличающиеся друг от друга по составу молекул на одну или несколько групп атомов СН 2 , которые называются гомологической разностью.

Изомерия алканов.

Изомерия – вещества, имеющие одинаковый состав молекул (т.е. одну и ту же молекулярную формулу), но различное химическое строение и обладающие поэтому разными свойствами. Такие соединения называются изомерами.

Характерна структурная изомерия.

    В формуле молекулы алкана выбирают главную цепь - самую длинную.

H3C-CH2-CH2-CH-CH2-CH3

2) Затем эту цепь нумеруют с того конца, к которому ближе расположен заместитель (радикал). Если заместителей несколько, то поступают так, чтобы цифры, указывающие их положение, были наименьшими. Заместители перечисляют по алфавиту.

H3C-CH-CH2-CH-CH2-CH3

    Углеводород называют в таком порядке: вначале указывают (цифрой) место расположения заместителя, затем называют этот заместитель (радикал), а в конце добавляют название главной (самой длинной) цепи. Таким образом, углеводород может быть назван: 2-метил-4-этилгептан (но не 6-метил-4-этилгептан).

Названия радикалов образуются от названия соответстующих углеводородов путем замены суффикса – ан на – ил.

Получение

Способы выделения их из природного сырья.

Природные источники алканов

Способы получения

2. Нефтяной газ

    Природный газ

    Каменный уголь

Фракционная перегонка.

1) ректификационные газы (С 3 Н 8 , С 4 Н 10)

2) газолиновая фракция (С 5 Н 12 до С 11 Н 24)

3) лигроиновая фракция (С 8 Н 18 до С 14 Н 30)

4) керосиновая фракция (С 12 Н 26 до С 18 Н 38)

5) дизельное топливо (С 13 Н 28 до С 19 Н 36)

6) мазут(С 18 Н 38 - С 25 Н 52 , С 28 Н 58 - С 38 Н 78)

    Термический;

    Каталитический

Фракционное разделение

    газовый бензин

    пропан-бутановая смесь

    сухой газ

Коксование

    коксовый газ

    каменноугольная смола

    надсмольная вода

«Синтетические способы получения алканов»

получения

Химизм реакции

Изомеризация

Гидрирование

Синтез Вюрца

Декарбоксилирование

Гидролиз карбидов

Физические свойства

Первые четыре члена алканов – газы, начиная от пентана до пентадекана (С 15 Н 32) – жидкости, высокомолекулярные алканы, в составе которых имеются 16 и больше атомов углерода, - твердые вещества. При нормальной температуре и при повышении давления пропан и бутан могут находиться и в жидком состоянии. Температуры кипения и плавления нормальных алканов выше температур кипения и плавления соответствующих им разветвленных алканов. Алканы – неполярные соединения. Они легче воды, не смешиваются с водой (не растворяются в воде) и не растворяются в других полярных растворителях. Жидкие алканы являются хорошими растворителями и используюся в качестве растворителей многих органических веществ. Метан и этан, а также высокомолекулярные алканы не имеют запах, но некоторые средние представители отличаются своеобразным запахом. Алканы – горючие соединения.

Химические свойства

    Реакция замещения: Галогенирование: СН 4 + Сl 2 →СН 3 Cl + НCl (хлорметан)

CH 3 Cl + Cl 2 → CH 2 Cl 2 + HCl (дихлорметан)

CH 2 Cl 2 + Cl 2 → CHCl 3 + HCl (трихлорметан)

CHCl 3 + Cl 2 → CCl 4 + HCl (тетрахлорметан).

    Реакция нитрования: С 2 Н 6 + НNO 3 →C 2 H 5 NO 2 + H 2 O

    Реакции разложения: СН 4 →С+2Н 2 , 2СН 4 →С 2 Н 2 + 3Н 2

    Реакции окисления: СН 4 + 2О 2 →СО 2 +2Н 2 О

2СН 4 + О 2 →2СО+4Н 2

    Каталитическое окисление метана приводит к образованию важных кислородсодержащих органических соединений.

2CH 4 +O 2 =2CH 3 OH

Применение

IV . Закрепление темы

    Выпишите формулы алканов из формул приведенных ниже углеводородов: С 2 Н 4 , С 3 Н 8 , С 4 Н 6 , С 5 Н 12 , С 6 Н 6 , С 7 Н 16 . Назовите их. (Стр.57 зад.3)

    Напишите, дополнив атомами водорода углеродный скелет, полные структурные формулы нижеприведенных углеводородов. Назовите их. (стр.57 зад. 6)

    Напишите структурные формулы следующих алканов: а) н – пентан; б) 2 – метилбутан; в) 2,4 – диметилпентан; г) 3 – метил – 4 – этилгексан; д) триметилметан (стр. 57 зад.9)

    Напишите структурные формулы следующих веществ:

а) 2,3 – диметилбутана,

б) 2,4 – диметил - 3 – этилпентана

в) н – пентана

V . Подведение итогов урока

Что нового на уроке узнали?

Что было интересным?

V І . Домашнее задание

Параграф 2.1, 2.2, 2.3, 2.4 написать минидоклад про метан и этан

Муниципальное бюджетное образовательное учреждение «Актанышская средняя общеобразовательная школа №1»

Актанышского муниципального района Республики Татарстан

Химия

10 класс

Тип урока: изучение нового материала

Форма урока: урок – путешествие с применением компьютера (с использованием мультимедиа- средств обучения)

Валиева Эльвира Фанисовна

Тема урока: Алканы, получения, свойства и применение

Урок – путешествие с мультимедийным сопровождением

I. Цели урока.1. Развивающие цели.

    Развивать у школьников логическое мышление, сформировать умение составлять уравнения реакции с участием алканов.

    Формировать интеллектуальные умения: умения анализировать свойства алканов, выделять главное, сравнивать, обобщать и систематизировать.

    Развивать волю и самостоятельность. Развивать умение владеть собой: уверенность в своих силах, умение преодолевать трудности в учении химии.

2. Образовательные цели.

    Обеспечить усвоение учащимися химических свойств и способов получения алканов.

    Обобщить и закрепить, систематизировать, ранее полученные знания по видам гибридизации, по номенклатуре органических соединений.

    Формировать навыки работы с игровыми элементами, видеофрагментами, иллюстративными материалами.

    Формировать культуру здоровья на уроках химии.

    Выявить недостаточно освоенные темы и скорректировать учебный процесс и готовить учащихся к ЕГЭ.

3. Воспитательные цели.

    Воспитывать культуру речи учащихся.

    Воспитать экологическую культуру и мышление у учащихся.

II . Тип урока: изучение нового материала.

III . Вид урока: урок с применением компьютера (с использованием мультимедиа- средств обучения).

IV . Инновационные, информационные технологии обучения, основанные на применении современной передовой техники – компьютеров, интерактивной доски, проектора.

V. Методы урока:

А. Иллюстративно-игровой

Б. Преподавания – сообщающий.

    обучения – а/ программированный б/ иллюстративно игровой

2)преподавания – а/ объяснительный б/ стимулирующий 3) учения – а/ репродуктивный б/ частично поисковый

VI . Средства: Компьютер, иллюстративный материал,

игровые элементы, лабораторные опыты и демонстрация на видео.

Ход урока:

На экране проектора:

Карта путешествия по стране «Алканы»

Информационная Привал

Разминка Информационная

Старт C n H 2 n +2

Техника

безопасности

Финиш Эксперимент


I станция. Разминка. Старт.

1. Устный опрос

1. Бензин, бытовой газ, растворители, пластмассы, красители, спирты, лекарства, духи – все продукты …

2. Болотный газ. Образуется при гниении, при сухой перегонке угля. Является главной составной частью природных газов…

3. Сколько видов органических веществ?

4. из него делают расчески, украшения, бильярдные шары, игрушки, мячи, щетки …

5. Материал для изготовления чемоданов…

6.Многие известные душистые вещества относятся к классу…

7.Всемирно известные духи – французские «Суар де Пари» и «Шанель» изготовлены из каких веществ?

8. Топливо для организма…

9. Это вещество наркотик, не безвреден для человека, парализует нервную, сердечно-сосудистую систему, печень …

10. Кто открыл теорию строения органических соединений?

11. Кто ввел понятие «гибридизация»

12. Что такое изомеры?

2. На экране проектора вопросы и задания

Ученики отвечают. После ответа учеников компьютер сразу дает правильный ответ.

1. Сколько электронов на втором уровне атома углерода.

2. Распределите электроны по орбиталям углерода в возбужденном состоянии.

3. Гибридизация атомных орбиталей.

а) Какие электроны перекрываются?



б) Образование ковалентных связей в молекуле метана (медикация)

в) Образование Г и П связей в молекуле этилена (медикация)

г) Образование Г и П связей в молекуле ацетилена (медикация)

д) Расположение С атомов в пространстве (медикация)

4. К какому классу относятся следующие соединения?

R-OH, R-C , R-C , R-O-R, R-CI

5. Общие формулы каких соединений изображены?

C n H 2 n +2 , C n H 2 n , C n H 2 n -2 ,

C n H 2 n +1 COOH, C n H 2 n +1 COH

6.Что такое гомологический ряд? Изображение на экране

H H H H H H H H H

H-C - C-H H-C-C-C-H H-C-C-C-C-H

H H H H H H H H H

7. Какая формула лишняя?

C 2 H 6 CH 4 C 6 H 16 C 16 H 34 C 2 H 4 C 12 H 24 C 4 H 10

3. Вспомним алгоритм называния веществ ациклического строения.

На экране формула вещества:

Медикация с озвучиванием:

1. Выберите самую длинную углеродную цепь

2. Пронумеруйте её с той стороны, к которой ближе радикалы, или старший заместитель, или кратная связь. (на экране происходит нумерация)

3. Указать в префиксе положения.(номер атома углерода) и назвать радикалы, заместителя, функциональной группы в алфавитном порядке.(на экране 2 – метил -)

4.Назвать основной углеводород (на экране 2-метил- бутан)

5.Если есть двойная связь, то после корня поставить суффикс –ен, для тройной связи -ин, если кратных связей нет – суффикс – ан.

II Информационная станция

1. Физические свойства алканов.

На экране схемы;

Учитель рассказывает: к метану специально добавляют серосодержащие соединения – меркаптаны, для того, чтобы люди могли по запаху определить утечку.

Демонстрация веществ: гексана, парафина

Разветвленные алканы кипят при более низких температурах, чем прямые.

Пишут в тетради: C 1 - C 4 газыCH 4 - T пл = -182,5 °СC 5 – C 15 - жидкостиС 16 – С n - твердые

2. Способы получения алканов.

    Алканы в больших количествах получают из природного газа и нефти.

    Из простых веществ в электрическом разряде:

C+2H 2 →CH 4

    Гидролиз карбида алюминия

+3 -4 AI 4 C 3 +6HOH → 4AI(OH) 3 +3CH 4

    Нагревание моногалогеноалканов с металлическим натрием (реакция Вюрца)

C 2 H 5 Br+2Na+Br-C 2 H 5 → C 2 H 5 - C 2 H 5 + 2NaBr Если разные галогеноалканы, то результатом будет смесь трех продуктов: t ° 3CH 3 Br + 3Na + 3Br-C 2 H 5 →CH 3 -CH 3 + CH 3 -CH 2 -CH 3 +C 2 H 5 -C 2 H 5

5. Декарбоксилирование. Сплавление ацетата натрия со щелочью. Полученный этим способом алкан будет иметь на один атом углерода меньше. Демонстрация опыта на экранекомпьютера (с озвучиванием)

6. Гидролиз реактива Гриньяра:

7.Алканы симметричного строения могут быть получены в результате электролиза солей карбоновых кислот (реакция Кольба)

III . Станция Привал . (Ученики отдыхают, слушают музыку).

IV . Информационная станция.

3. Химические свойства алканов.

Так как связи в алканах малополярные, то для них характерны радикальные реакции, реакции замещения.

1.Реакции замещения.

а) С галогенами (галогенирование). С хлором на свету, с бромом при нагревании.

В случае избытка хлора хлорирование идет дальше, до полного замещения атомов водорода.

Реакция идет по радикальному механизму.

2.Реакции отщепления

а) Дегидрирование (отщепление водорода)

б) Крегинг алканов:

Крекинг -0 радикальный разрыв связей С-С. Протекает при нагревании и в присутствии катализаторов. При крекинге образуется смесь алканов с меньшим числом С атомов. Механизм свободно радикальный. Этот процесс является важнейшей стадией переработки нефти.

в) при температуре 1500 0 С метан пиролизуется

г) при температуре 1000 0 С:

3 Реакции окисления.

а) В присутствии избытка кислорода происходит полное сгорание алканов до СО 2 и Н 2 О. При сгорании алканов выделяется большое количество теплоты, на этом основано их применение в качестве топлива.

V .Экспериментальная станция

- На экране видеофрагмент с озвучиванием «Горение метана» с озвучиванием:

Низкие алканы горят бесцветным пламенем, а с ростом числа атомов углерода в молекуле пламя алканов становится все более окрашенным и коптящим.

VI . Станция Техника безопасности

а)Газообразные углеводороды с воздухом в определенных соотношениях могут взрываться!

б) В условиях недостатка кислорода происходит неполное сгорание, продуктом является сажа (С) ядовитый газ СО

в) При мягком окислении алканов кислородом воздуха на катализаторах могут быть получены спирты, альдегиды, кислоты с меньшим количеством атомов углерода в молекуле.

4 Реакции изомеризации

Алканы нормального строения при нагревании в присутствии катализатора могут превращаться в алканы с разветвленной цепью.

5. Ароматизация.

Алканы с шестью и более атомами углерода вступают в реакцию дегидрирования с образованием цикла:

    Станция Финиш-закрепление

Вопросы по группам.

Домашнее задание:

Упражнение4,6,7,8(писменно),стр.81.

Применение алканов довольно разнообразное — их используют в качестве топлива, а также в механике, медицине и т.д. Роль этих химических соединений в жизни современного человека трудно переоценить.

Алканы: свойства и краткая характеристика

Алканы представляют собой нециклические углеродные соединения, в которых атомы углерода связаны простыми насыщенными связями. Эти вещества представляют собой целый ряд с определенными свойствами и характеристиками. выглядит следующим образом:

N здесь представляет собой количество атомов углерода. Например, CH3, C2H6.

Первые четыре представителя ряда алканов — газообразные вещества — это метан, этан, пропан и бутан. Следующие соединения (от C5 до C17) — это жидкости. Ряд продолжается соединениями, которые при нормальных условиях представляют собой твердые вещества.

Что же касается химических свойств, то алканы являются малоактивными — они практически не взаимодействуют со щелочами и кислотами. Кстати, именно химическими свойствами определяется применение алканов.

Тем не менее, для этих соединения характерны некоторые реакции, включая замещение атомов водорода, а также процессы расщепления молекул.

  • Самой характерной реакцией считается галогенирование, при котором атомы водорода заменяются галогенами. Большое значение имеют реакции хлорирования и бромирования этих соединений.
  • Нитрование — замещение водородного атома нитрогруппой при реакции с разбавленной (концентрация 10%) В обычных условиях алканы не взаимодействуют с кислотами. Для того чтобы провести подобную реакцию, нужна температура 140 °С.
  • Окисление — при нормальных условиях алканы не поддаются воздействию кислорода. Тем не менее, после поджигания на воздухе эти вещества вступают в окончательными продуктами которой являются вода и
  • Крекинг — эта реакция проходит лишь при наличии необходимых катализаторов. В процессе происходит расщепление стойких гомологических связей между атомами углерода. Например, при крекинге бутана в результате реакции можно получить этан и этилен.
  • Изомеризация — в результате воздействия некоторых катализаторов возможна некая перестройка углеродного скелета алкана.

Применение алканов

Основным естественным источником этих веществ являются столь ценные продукты, как природный газ и нефть. Области применения алканов на сегодняшний день очень широки и разнообразны.

Например, газообразные вещества используют как ценный источник топлива. Примером может служить метан, из которого и состоит природный газ, а также пропанобутановая смесь.

Еще один источник алканов — нефть , значение которой для современного человечества переоценить трудно. К нефтяным продуктам относят:

  • бензины — используются в качестве топлива;
  • керосин;
  • дизельное топливо, или легкий газойль;
  • тяжелый газойль, который применяют в качестве смазочного масла;
  • остатки используют для изготовления асфальта.

Нефтяные продукты также используются для получения пластмасс, синтетических волокон, каучуков и некоторых моющих средств.

Вазелин и вазелиновое масло — продукты, которые состоят из смеси алканов. Их используют в медицине и косметологии (в основном для приготовления мазей и кремов), а также в парфюмерии.

Парафин — еще один всем известный продукт, которые представляет собой смесь твердых алканов. Это твердая белая масса, температура топления которой составляет 50 - 70 градусов. В современном производстве парафин используется для изготовления свечей. Этим же веществом пропитывают спички. В медицине с помощью парафина проводят разного рода тепловые процедуры.

Уроки химии в 10 классе по двухчасовой программе Габриеляна О.С.

Аббакумов А.В.


Урок «Природный газ. Алканы».

(лекция)
Цели урока: рассмотреть основные природные источники углеводородов в свете двух направлений их использования: в качестве энергетического сырья и основы химического синтеза. На этом материале повторить, закрепить и обобщить полученные ранее знания о свойствах и применении предельных углеводородов.
Оборудование: коллекции «Нефть и нефтепродукты», «Каменный уголь и продукты его переработки», таблицы по составу природного и попутного газов, портреты М.В. Ломоносова, Д.И. Менделеева, Н.Д. Зелинского, В.Г. Шухова.
^ Ход урока.
I. Подготовка к уроку (проверить готовность к уроку групп учащихся, оборудования, класса; отметить в журнале отсутствующих учащихся; сообщить тему и цели урока).
II. Лекция.

План лекции.


    1. Природные газы и их использование.

    2. Понятие об углеводородах.

    3. Электронное и пространственное строение молекулы метана.

    4. Гомологический ряд предельных углеводородов.

    5. Изомерия и номенклатура алканов.

    6. Способы получения и физические свойства алканов.

    7. Химические свойства и применение алканов.

1. Природные газы и их использование .

Наша страна по запасам природного газа занимает первое место в мире. В России открыто около 200 месторождений природного газа. Подавляющее количество добываемого газа используется в качестве топлива.

Преимущества газа перед другими видами топлива :


  • высокая теплотворная способность (при сжигании 1 м 3 природного газа выделяется до 54 400 кДж);

  • дешевизна;

  • экологическая чистота;

  • легкая транспортировка по газопроводам.

Таким образом, природный газ на сегодняшний день один из лучших видов топлива для бытовых и промышленных (автомобили, металлургические, стекло- и мыловаренные печи и другое) нужд. Кроме того, природный газ служит ценным и дешевым сырьем для химической промышленности.
^ Состав природного газа .

В состав природного газа различных месторождений различен. Однако в газах всех месторождений содержатся углеводороды с небольшой относительной молекулярной массой.

Состав природного газа :


  • 80-90% метана;

  • 2-3% его гомологов (этана, пропана, бутана);

  • небольшое содержание примесей (сероводорода, азота, благородных газов, углекислого газа и паров воды).

2. Понятие об углеводородах .

Название группы органических соединений, которые мы сегодня начинаем изучать, отображает их состав.

Углеводороды, это соединения, состоящие только из атомов углерода и водорода.
Классификация углеводородов

Углеводороды

Циклические (карбоциклические) Ациклические

Циклическими (карбоциклические) называют соединения, в состав которых входит один или более циклов, состоящих только из атомов углерода. Они в свою очередь делятся на ароматические и неароматические.

К ациклическим углеводородам относят органические соединения, углеродный скелет молекул которых представляет собой незамкнутые цепи.

Эти цепи могут быть образованы одинарными связями (алканы), содержать одну двойную связь (алкены), две двойные связи (диены), одну тройную связь (алкины).
3. ^ Электронное и пространственное строение молекулы метана .

Сегодня мы приступаем к изучению первого класса углеводородов - алканов (предельных, насыщенных, парафиновых углеводородов).

^ Алканы – углеводороды, в молекулах которых атомы связаны одинарными связями и которые соответствуют общей формуле С n H 2 n +2 .

[ Демонстрация отношения метана к раствору перманганата калия и бромной воде].

Простейший представитель этого класса – метан – известен людям очень давно. Его называли болотным, или рудничным, газом.

Атом углерода в метане находится в состоянии sp 3 -гибридизации. Углерод в данном случае имеет четыре равноценных гибридных орбитали, оси которых направлены к вершинам тетраэдра. Угол между осями этих орбиталей составляет 109°28". /Изображение строение атома углерода в sp 3 -гибридном состоянии /.

Электронное строение атома углерода определяет пространственное расположение атомов в молекуле метана. Все четыре ковалентные связи С – Н образованы за счет перекрывания sp 3 -орбиталей атома углерода и s-орбитали водорода. Все связи в молекуле метана относятся к σ-типу. Центры ядер атомов водорода лежат в вершинах правильного тетраэдра. /Демонстрация модели молекулы метана/ .

Вокруг одинарной углерод-углеродной связи возможно практически свободное вращение, и молекулы алканов могут приобретать самую разнообразную форму. /Демонстрация на модели молекулы бутана/ .

Связи углерод – углерод являются неполярными и плохо поляризуемыми. Длина С – С связи в алканах равна 0,154 нм. Связь С – Н является слабополярной.

Отсутствие в молекулах предельных углеводородов полярных связей приводит к тому, что они плохо растворяются в воде.
4. ^ Гомологический ряд предельных углеводородов .

Предельные углеводороды составляют гомологический ряд метана.

Гомологический ряд, это совокупность органических соединений, обладающих подобным строением и свойствами и отличающихся друг от друга по составу на одну или несколько групп – СН 2 – (гомологическую разность).

Представители одного гомологического ряда называются гомологами.

На примере первых четыре представителей выведите общую формулу алканов:

Метан – СН 4 ; Этан – С 2 Н 6 ; Пропан – С 3 Н 8 ; Бутан – С 4 Н 10 ; Пентан – С 5 Н 12 .

(Общая формула алканов – С n H 2 n +2).
5. ^ Изомерия и номенклатура алканов .

Для алканов характерна структурная изомерия. Структурные изомеры отличаются друг от друга строением углеродного скелета.
Основы номенклатуры ИЮПАК .


  1. Выбор главной цепи.

  2. Нумерация атомов главной цепи.

  3. Формирование названия.

В зависимости от количества радикалов соединенных с атомом углерода различают: первичный, вторичный, третичный и четвертичный атом углерода.
6. Способы получения и физические свойства алканов .


  1. Крекинг нефтепродуктов

  2. Гидрирование алкенов

  3. Пиролиз солей карбоновых кислот

  4. Реакция Вюрца
7. Химические свойства и применение алканов

1). Реакция горения .

Многочисленные химические реакции протекают как вокруг человека, так и в нем самом. Порой мы просто не обращаем внимания на эти химические явления. Когда мы зажигаем на кухне газ или щелкаем зажигалкой, едем в автомобиле или смотрим по телевизору трагические последствия взрыва в шахте, мы свидетели реакции горения алканов [Демонстрация горения метана].

Как и большинство органических веществ, предельные углеводороды при горении образую водяные пары и углекислый газ:

CH 4 + 2O 2 → CO 2 + 2H 2 O

При горении предельных углеводородов выделяется большое количество теплоты, что предопределяет их использование в качестве топлива.
2). ^ Реакция замещения .

Вспомните строение метана. Атомы углерода полностью исчерпали свои валентные возможности. Чтобы получить из метана другое вещество, нужно разорвать связи С – Н и заменить водород другим атомом или группой атомов. Таким образом, для алканов характерны реакции замещения.

׀ ׀

H−C−H + Cl−Cl → H−C−Cl + H−Cl

При достаточном количестве галогена реакция продолжается до образования полизамещенных продуктов.

В качестве галогена в таких реакциях можно использовать только хлор и бром. Реакция с фтором протекает со взрывом и приводит к разрушению молекулы алкана, а иод как менее активный галоген на такое превращение не способен.
3). ^ Реакция разложения .

При нагревании алканов без доступа воздуха с ним происходят самые разнообразные превращения, используемые в промышленности. При нагревании метана до 1000°С начинается пиролиз метана – разложение на простые вещества.

СН 4
С + 2Н 2

2СН 4
^ СН≡СН + 3Н 2

Таким образом, из парафинов можно получить углеводороды с двойной и тройной связью.

4). Реакция дегидрирования .

Для гомологов метана возможен еще один практически важный процесс: реакция дегидрирования. Это превращение протекает в присутствии катализатора при повышенной температуре и приводит к образованию этиленовых углеводородов.

Н−С−С−Н
Н−С=С−Н + Н−Н

׀ ׀

Надо отметить, что при комнатной температуре предельные углеводороды весьма инертные соединения, не взаимодействующие с агрессивными веществами. Наиболее типичны для алканов реакции радикального замещения (галогенирования, нитрования).

Подобно тому, как строение вещества определяет его реакционную способность, так и свойства во многом обусловливают области применения соединений.

Газообразные алканы – это не только бытовое и промышленное топливо, но и сырье для химической промышленности. Из них получают галогенопроизводные, в том числе полностью фторированные углеводороды (фреоны), являющиеся хладоагентами бытовых и промышленных холодильников и кондиционеров. Из этана и пропана получают непредельные углеводороды и далее полимерные материалы. Жидкие углеводороды – это, прежде всего, топливо для двигателей различного типа (сверхзвуковой самолет потребляет до 100 л керосина в минуту!), растворители, сырье для получения алкенов.

III. Задание на дом: § 3 упр. 4

Урок по химии с применением ИКТ по теме "Алканы"

Цель урока: познакомить учащихся с алканами и выявить важную их роль в промышленности.

Задачи урока:

Образовательная: рассмотреть гомологический ряд предельных углеводородов, строение, физические и химические свойства, способы их получения при переработке природного газа, возможности их получения из природных источников: природного и попутного нефтяного газов, нефти и каменного угля.

Развивающая: развить понятие о пространственном строении алканов; развитие познавательных интересов, творческих и интеллектуальных способностей, развитие самостоятельности в приобретении новых знаний с использованием новых технологий.

Воспитательная: показать единство материального мира на примере генетической связи углеводородов разных гомологических рядов, получаемых при переработки природного и попутного нефтяного газов, нефти и каменного угля.

Оборудование: компьютер, мультимедиа проектор, экран, презентация.

Ход урока

I. Организационный момент. (Сообщить цель и тему урока).

II. Изученного нового материала.

Тема урока: "Алканы". Слайд № 1

План изучения алканов. Слайд № 2

Определение. Общая формула класса углеводородов.

Гомологический ряд.

Виды изомерии.

Строение алканов.

Физические свойства.

Способы получения.

Химические свойства.

Применение.

Алканы. (Предельные углеводороды. Парафины. Насыщенные углеводороды.)

Алканы - углеводороды в молекулах которых все атомы углерода связаны одинарными связями и имеют общую формулу: C n H 2n+2 Слайд № 3

Что такое гомологи?

Гомологический ряд метана

СН 4 метан

С 2 H 6 этан

C 3 H 8 пропан

C 4 H 10 бутан

C 5 H 12 пентан

C 6 H 14 гексан

C 7 H 16 гептан

C 9 H 20 нонан

Гомологи - это вещества, сходные по строению и свойствам и отличающиеся на одну или более групп СH 2 .

Структурная изомерия:

Алгоритм.

1. Выбор главной цепи: Слайд № 5

2. Нумерация атомов главной цепи: Слайд № 6

3. Формирование названия: Слайд № 7

2 - метилбутан

Строение алканов.

Атом углерода во всех органических веществах находится в "возбуждённом" состоянии, имеет на внешнем уровне четыре неспаренных электрона.

Каждое электронное облако обладает запасом энергии: s- облако имеет меньший запас энергии, чем р-облако, в атоме углерода они находятся в разных энергетических состояниях. Поэтому при образовании химической связи происходит гибридизация, т. е. выравнивание электронных облаков по запасу энергии. Это отображается на форме и направленности облаков, происходит перестройка (пространственная) электронных облаков.

В результате sp3 - гибридизации все четыре валентных электронных облака гибридизованы: валентный угол между этими осями гибридизованных облаков 109° 28", поэтому молекулы имеют пространственную тетраэдрическую форму, форма углеродных цепей зигзагообразна; атомы углерода не находятся на одной прямой, т. к. при вращении атомов валентные углы остаются прежними.

Все органические вещества построены в основном за счёт ковалентных связей. Углерод - углеродные и углерод - водородные связи относятся к сигма - связям - это связь, образующаяся при перекрывании атомных орбиталей по линии, проходящей через ядра атомов. Возможно вращение вокруг сигма - связей, поскольку эта связь имеет осевую симметрию. Слайд № 13

Физические свойства.

СН 4:C 4 Н 10 - газы

T кипения: -161,6:-0,5 °C

T плавления: -182,5:-138,3 °C

С 5 Н 12:C 15 Н 32 - жидкости

T кипения: 36,1:270,5 °C

T плавления: -129,8:10 °C

T кипения: 287,5 °C

T плавления: 20 °C

С увеличением относительных молекулярных масс предельных углеводородов закономерно повышаются их температуры кипения и плавления. Слайд № 14

Получение.

В промышленности

1) крекинг нефтепродуктов:

C 16 H 34 - C 8 H 18 + C 8 H 16

2) В лаборатории:

а) Гидролиз карбидов:

A l 4 C 3 +12 H 2 O = 3 CH 4 + 4 Al(OH) 3

б) Реакция Вюрца:

C 2 H 5 Cl + 2Na - C 4 H 10 + 2NaCl

в) Декарбоксилирование натриевых солей карбоновых солей:

СН 3 СООNa + 2NaОН - СН 4 + Nа 2 СО 3 Слайд № 15

Химические свойства

Для алканов характерны следующие типы химических реакций:

Замещение атомов водорода;

Дегидрирование;

Окисление.

1) Замещение атомов водорода:

А) Реакция галогенирования:

CH 4 +Cl 2 - CH 3 Cl + HCl

Б) Реакция нитрования (Коновалова):

CH 4 + HNO 3 - CH 3 -NO 2 + H 2 O + Q

В) Реакция сульфирования:

CH 4 + H 2 SO 4 - CH 3 -SO 3 H + H 2 O + Q

2) Реакция изомеризации:

CH 3 -CH 2 -CH 2 -CH 2 -CH 3 - СН 3 -СН-СН 2 -СН 3

3) Реакция с водяным паром:

CH 4 + H 2 O = CO + 3H 2

4) Реакция дегидрирования:

2СН 4 - НС=СН + 3Н 2 + Q

5) Реакция окисления:

CH 4 + O 2 - Н 2 C=О + H 2 O

6) Горение метана:

CH 4 + 2O 2 CO 2 + 2H 2 O + Q Слайд № 20

Применение.

(Возможно, заранее подготовленные выступления учащихся.)

Широко используются в качестве топлива, в том числе для

двигателей внутреннего сгорания, а также при производстве сажи

(1 - картриджи; 2 - резина; 3 - типографическая краска), при получение органических веществ (4 - растворителей; 5 - хладогентов, используемых в холодильных установках; 6 - метанол; 7 - ацетилен) Слайд № 21

III. Закрепление.

Составьте все возможные изомеры для гептана и назовите их.

Составьте 2 ближайших гомолога для пентана и назовите их.

Определить предельный углеводород, плотность паров которого по воздуху равна 2. (C 4 H 10).

Учебник: №12 (стр. 33).

IV. Домашнее задание: Учебник О.С. Габриелян (10 класс базовый уровень): 3, упр. 4, 7, 8 (стр. 32).

Литература.

Горковенко М. Ю. Поурочные разработки по химии к учебным комплектам О. С. Габриеляна и др., 10 (11) класс. М.: "ВЕКО", 2008 г.



error: Контент защищен !!